Type "Sleeswyk"type sleeswyk

The ultimate design: Prof. Sleeswyk's reconstruction of Wu Tê-jen's historic chariot. It consists of three (!) differentials which are coupled and constrained very cleverly: The basic equations (see  equation for generic differential):
(a:) n3 * rot3 + n10 * rot10 - (n3 + n10) * rot1 = 0
(b:) n7 * rot7 + n15 * rot15 - (n7 + n15) * rot9 = 0 
(c:) n6 * rot6 - n5 * rot5 = 0
(d:) n4 * rot4 + n5 * rot5 = 0 (POV to the far right !)
(e:) n11 * rot11 + n12 * rot12 = 0
(f:) n13 * rot13 + n14 * rot14 = 0
 The other constraints in math notation:
(g:) rot3 = rot4
(h:) rot6 = rot7
(i:) rot10 = rot11
(j:) rot12 = rot13
(k:) rot14 = rot15
Composition (POV is from top respectively from far right):
(k=>) rot15 = rot14
(f=>)   = (-1) * (n13 / n14) * rot13
(j=>)   = (-1) * (n13 / n14) * rot12
(e=>)   = (n13 / n14) * (n11 / n12) * rot11
(i=>l:)   = (n13 / n14) * (n11 / n12) * rot10
(a=>) rot10 = ((n3 + n10) / n10) * rot1 - (n3 / n10) * rot3
(g,d=>)   = ((n3 + n10) / n10) * rot1 + (n3 / n10) * (n5 / n4) * rot5
(b=>) rot15 = ((n7 + n15) / n15) * rot9 - (n7 / n15) * rot7
(h,c=>)   = ((n7 + n15) / n15) * rot9 - (n7 / n15) * (n5 / n6) * rot5
(l=>) rot15 = (n13 / n14) * (n11 / n12) * ((n3 + n10) / n10) * rot1 + (n13 / n14) * (n11 / n12) * (n3 / n10) * (n5 / n4) * rot5
(m:) [(n13 / n14) * (n11 / n12) * (n3 / n10) * (n5 / n4) + (n7 / n15) * (n5 / n6)] * rot5 + (n13 / n14) * (n11 / n12) * ((n3 + n10) / n10) * rot1 - ((n7 + n15) / n15) * rot9 = 0

To make it "south-pointing" requires, that if rot9 is held 0, rot5 has to be exactly one turn when wheel 1 of diameter d1 covered one full circle (centre at wheel 1's contact to the ground, radius equal to track width t):
 

(n:) d1 * rot1 * PI = 2 * t * PI
(o:) rot5 = 1
(p:) rot12 = 0
(m=>) rot1 = (-1) * [(n13 / n14) * (n11 / n12) * (n3 / n10) * (n5 / n4) + (n7 / n15) * (n5 / n6)] * (n14 / n13) * (n12 / n11) * (n10 / (n3 + n10))
(n=>) d1 = 2 * t / | rot1 |

The same method can be applied to calculate the required size for wheel 9: If rot1 is held 0, rot5 has to be exactly one turn when wheel 9 of diameter d9 covered one full circle (this time centre at wheel 1's contact to the ground, radius equal to track width t):
 

(q:) d9 * rot9 * PI = 2 * t * PI
(r:) rot1 = 0
(m=>) rot9 = [(n13 / n14) * (n11 / n12) * (n3 / n10) * (n5 / n4) + (n7 / n15) * (n5 / n6)] * (n15 / (n7 + n15))
(q=>) d9 = 2 * t / rot9

Given Parameters (Your choice !)

Reference
Size Description
2
n2[teeth] Bevel gear, shaft fixed to wheel 1
3
n3[teeth] Bevel gear, freerunning on horizontal shaft
4
n4[teeth] Bevel gear, fixed to wheel 3
5
n5[teeth] Bevel gear, carries pointer on vertical shaft
6
n6[teeth] Bevel gear, free running on horizontal shaft
7
n7[teeth] Bevel gear, fixed to wheel 6
8
n8[teeth] Bevel gear, shaft fixed to road wheel 9
10
n10[teeth] Bevel gear, free running on horizontal shaft
11
n11[teeth] Spur gear, fixed to wheel 10
12
n12[teeth] Spur gear, fixed to auxiliary shaft
13
n13[teeth] Spur gear, fixed to auxiliary shaft
14
n14[teeth] Spur gear, freerunning on horizontal shaft
15
n15[teeth] Bevel gear, fixed to wheel 14
T
t = [length units] Track width

Derived Parameters

Reference
Size Description
1
d1[units of t] Roadwheel, fixed on axle
9
d9[units of t] Roadwheel, fixed on axle

© odts 2001