Type "ODTS4"type odts4

Further in my pursuit of the most elegant chariot, I reconsidered Dr. Eppendahl's design and - thanks to the beauty of abstract diagrams - found, that one idler wheel could be eliminated simply by swapping the differentials. This may be difficult with LEGO blocks, but Fischertechnik provides units with identical dimension for the "red" and "green" configuration.

Equations: 
(a:) rot2 + rot5 - k * rot3 = 0
(b:) rot6 + rot8 + k * rot7 = 0
(c:) n4 * rot4 + n11 * rot11 = 0
(d:)
n10 * rot10 + n11 * rot11 = 0
 
The remaining constraints:
(e:) rot1 = rot2
(f:) rot3 = rot4
(g:) rot5 = rot6
(h:) rot8 = rot9
(i:) rot7 = rot10

Composition:
(a,e=>k) rot5 =  - rot1 + k * rot3
(b,g,h=>l) rot5 =  - rot9 - k * rot7
(k,l=>m)
rot1 - rot9 =  k * (rot3 + rot7)
(c,f=>n) rot3 = - rot11 * (n11 / n4)
(d,i=>o)
rot7 = - rot11 * (n11 / n10)
(m,n,o=>p)
rot1 - rot9 =  - rot11 * k * n11 * (n4 + n10) / (n4 * n10)
(p=>q)
rot11 =   (rot9 - rot1) * n4 * n10 / ( k * n11 * (n4 + n10))

To make it "south-pointing" requires, that if rot1 is held 0, rot12 has to be exactly one turn when wheel 9 of diameter d9 covered one full circle (centre at wheel 1's contact to the ground, radius equal to track width t):
(r:) d9 * rot9 * PI = 2 * t * PI                                             d1 * rot1 * PI = 2 * t * PI
(s:) rot1 = 0
rot9 = 0
(t:) rot11 = 1
rot11 = -1
(q=>) rot9  = k * n11 * (n4 + n10) / (n4 * n10)
rot1 = k * n11 * (n4 + n10) / (n4 * n10)
(r=>) d9 = 2 * t / rot9
d1 = 2 * t / rot1
(n4 = n10) => d1 = d9 =  t  * n4 / ( k * n11)

Given Parameters (Your choice !)

Reference
Size Description
4/10
n10[teeth] Spur gear, fixed to drive shaft 3/7 of differential
11
n11[teeth] Spur gear, fixed to pointer
k
k =  Differential reduction factor
T
t = [length units] Track width

Derived Parameters

Reference
Size Description
1/9
d1[units of t] Road wheel, free running on axle

© odts 2003