Type "Hitachi"type Hitachi

This is essentially type ODTS II - invented independently in Japan, as it seems. Nevertheless I consider it worth an own calculation sheet, as the differential is built with discrete parts, adding some charm to it ;-)

As usual, the dimensioning equations:
 
(a:) rot4 + rot6 - 2 * rot5 = 0
(b:) n2 * rot2 + n3 * rot3 = 0
(c:) n7 * rot7 + n8 * rot8 = 0
(d:) n8 * rot8 + n9 * rot9 = 0
(e:) n5 * rot5 - n11 * rot11 = 0
(f:) n12 * rot12 + n13 * rot13 = 0
 The remaining constraints:
(g:) rot1 = rot2
(h:) rot3 = rot4
(i:) rot6 = rot7
(j:) rot9 = rot10
(k:) rot11 = rot12
Composition
(b,g,h=>) rot4 =  - (n2 / n3) * rot1
(c,d,i,j=>) rot6 =  (n9 / n7) * rot10
(e,f,k=>) rot5 = -(n11 / n5) * (n13 / n12) * rot13 
(a=>l:) 2 * (n11 / n5) * (n13 / n12) * rot13 = (n2 / n3) * rot1 - (n9 / n7) * rot10
To make it "south-pointing" requires, that if rot1 is held 0, rot13 has to be exactly one turn when wheel 10 of diameter d10 covered one full circle (centre at wheel 1's contact to the ground, radius equal to track width t):
(m:) d10 * rot10 * PI = 2 * t * PI   d1 * rot1 * PI = 2 * t * PI
(n:) rot1 = 0 rot10 = 0
(o:) rot13 = -1 rot13 = 1
(l=>) rot10 = (n7 / n9) * (n11 / n5) * (n13 / n12) rot1 = k * (n3 / n2) * (n11 / n5) * (n13 / n12)
(m=>) d10 = 2 * t / rot10 d1 = 2 * t / rot1
The same method can be applied to calculate the required size for wheel 1, see rightmost column of table above.

Given Parameters (Your choice !)

Reference
Size Description
2
n2[teeth] Spur gear, fixed to wheel 1
3
n3[teeth] Spur gear, fixed to right differential shaft
5
n5[teeth] Bevel gear, fixed to rotor of differential
7
n7[teeth] Spur gear, fixed to left differential shaft
8
n8[teeth] Spur gear, Idler
9
n9[teeth] Spur gear, fixed to wheel 10
11
n11[teeth] Bevel gear
12
n12[teeth] Spur gear
13
n13[teeth] Spur gear, fixed to platform
T
t = [length units] Track width

Derived Parameters

Reference
Size Description
1
d1[units of t] Road wheel, free running on axle
10
d10[units of t] Road wheel, free running on axle

© odts 2003